B43G-0626
Application of ecosystem model and Markov Chain Monte Carlo method for parameter optimization and ecosystem productivity prediction at seven forest flux sites across North America
Thursday, 17 December 2015
Poster Hall (Moscone South)
Changhui Peng and Xiaolu Zhou, University of Quebec at Montreal UQAM, Montreal, QC, Canada
Abstract:
To reduce simulation uncertainties due to inaccurate model parameters, the Markov Chain Monte Carlo (MCMC) method was applied in this study to improve the estimations of four key parameters used in the process-based ecosystem model of TRIPLEX-FLUX. These four key parameters include a maximum photosynthetic carboxylation rate of 25°C (Vcmax), an electron transport (Jmax) light-saturated rate within the photosynthetic carbon reduction cycle of leaves, a coefficient of stomatal conductance (m), and a reference respiration rate of 10ºC (R10). Seven forest flux tower sites located across North America were used to investigate and facilitate understanding of the daily variation in model parameters for three deciduous forests, three evergreen temperate forests, and one evergreen boreal forest. Eddy covariance CO2 exchange measurements were assimilated to optimize the parameters in the year 2006. After parameter optimization and adjustment took place, net ecosystem production prediction significantly improved (by approximately 25%) compared to the CO2 flux measurements taken at the seven forest ecosystem sites.