GC44A-01
HYDROCLIMATIC EXTREMES: INFERENCES AND PREDICTION FROM A DYNAMICAL SYSTEMS PERSPECTIVE

Thursday, 17 December 2015: 16:00
3012 (Moscone West)
Upmanu Lall, Columbia Univ, New York, NY, United States
Abstract:
Hydroclimatic extremes , such as major floods and droughts, or periods with a high frequency of clustered tornadoes, fires or cyclones, have often been thought of as random, rare events, and much of the literature on these topics has been obsessed with the estimation of the tail probabilities (e.g., the 100 year event) of these processes. It has taken the "acceptance" of the notion of climate change to question whether the machinery developed for such estimation or even the associated questions are reasonable. However, much of the literature that has evolved since has focused on how to detect and model changes in these probabilities using a variety of methods. In this talk, I will argue that while such efforts may be useful in a certain, outdated context, they are not necessarily leading to an improvement in eihter the science of the application of the science to disaster risk mitigation. I develop an argument that hydroclimatic extremes result from an organization of the associated global and local dynamical systems that leads to the systems trajectories locking into a particular region of state space. Such excursions could be considered as rare events, in their ultimate expression, or in their frequency of visitation and persistence in those states. An open question is whether the dynamics of the system under such conditions are marked by high or low predictabilty in the Lyapunov sense. A characterization of the dimension and predictability of hydroclimatic extremes would allow us to better understand the potential implications of climate change, and also of whether or not a regional drought or similar persistent regime is likely to dissipate or grow.