H21G-1483
Chemotaxis Increases the Residence Time Distribution of Bacteria in Granular Media Containing Distributed Contaminant Sources

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Joanna Adadevoh1, Sarah Triolo1, C Andrew Ramsburg2 and Roseanne Ford1, (1)University of Virginia Main Campus, Charlottesville, VA, United States, (2)Tufts University, Medford, MA, United States
Abstract:
The use of chemotactic bacteria in bioremediation has the potential to increase access to, and biotransformation of, contaminant mass within the subsurface environment. This laboratory-scale study aimed to understand and quantify the influence of chemotaxis on residence times of pollutant-degrading bacteria within homogeneous treatment zones. Focus was placed on a continuous flow sand-packed column system in which a uniform distribution of naphthalene crystals created distributed sources of dissolved phase contaminant. A 10 mL pulse of Pseudomonas putida G7, which is chemotactic to naphthalene, and Pseudomonas putida G7 Y1, a non-chemotactic mutant strain, were simultaneously introduced into the sand-packed column at equal concentrations. Breakthrough curves obtained for the bacteria from column experiments conducted with and without naphthalene were used to quantify the effect of chemotaxis on transport parameters. In the presence of the chemoattractant, longitudinal dispersivity of PpG7 increased by a factor of 3 and percent recovery decreased from 21% to 12%. The results imply that pore-scale chemotaxis responses are evident at an interstitial fluid velocity of 1.7 m/d, which is within the range of typical groundwater flow. Within the context of bioremediation, chemotaxis may work to enhance bacterial residence times in zones of contamination thereby improving treatment.