B42C-01
High Resolution Partitioning of Soil Properties and Soil Organic Carbon Storage in the Lena River Delta

Thursday, 17 December 2015: 10:20
2004 (Moscone West)
Matthias Benjamin Siewert, Stockholm University, Stockholm, Sweden
Abstract:
High-resolution vertical and spatial information on SOC storage and other key properties of permafrost-affected soils is key for the assessment and modeling of the vulnerability of permafrost carbon. We present findings of soil investigations from the high Arctic Lena river delta. In total 50 soil pedons have been sampled from different geomorphological units (delta terraces) in the delta in late summer 2013. All pedons have been classified according to the U.S. soil taxonomy. We described and sampled 19 Turbels, 27 Orthels and 4 Histels. On average 7.9±2.7 samples have been analyzed from each profile, including samples of the upper permafrost down to one meter depth. Soil horizons are described from open soil pits and their respective thicknesses are calculated from perspective-corrected photographs. Soil samples were analyzed for bulk density, as well as content of water/ice soil organic carbon (SOC) and nitrogen (N). The data is aggregated for the different geomorphological units and partitioned at centimeter level. High resolution vertical depth plots of different soil properties, including C%, N%, water and ice content and soil horizon distribution, are generated to demonstrate the information density of the dataset. A high-resolution land cover classification is generated for a subregion of the delta using advanced remote sensing classification methods. The soil pedon data and the land cover classification are combined for thematic upscaling of SOC and N stocks. We identify major geomorphological units of the Lena delta to control SOC storage in the subregion. We can show that SOC storage is highly variable with depth. Strong cryoturbation contributes to much deep SOC storages on the relatively stable first and third delta terraces, while fluvial deposition controls SOC storage in the recent alluvial floodplain. Soils sampled on thermokarst-affected rims of the third terrace show lower SOC storages indicating considerable reworking of the SOC.