A32A-01
A new method and application for determining the nitrogen isotopic composition of NOx
Wednesday, 16 December 2015: 10:20
3004 (Moscone West)
Meredith Galanter Hastings1, David J Miller2, Paul Wojtal2 and Mary O'Connor2, (1)Brown University, Department of Earth, Environmental and Planetary Sciences, Providence, RI, United States, (2)Brown University, Providence, RI, United States
Abstract:
Atmospheric nitrogen oxides (NOx = NO + NO2) play key roles in atmospheric chemistry, air quality, and radiative forcing, and contribute to nitric acid deposition. Sources of NOx include both natural and anthropogenic emissions, which vary significantly in space and time. NOx isotopic signatures offer a potentially valuable tool to trace source impacts on atmospheric chemistry and regional acid deposition. Previous work on NOx isotopic signatures suggests large ranges in values, even from the same emission source, as well as overlapping ranges amongst different sources, making it difficult to use the isotopic composition as a quantitative tracer of source influences. These prior measurements have utilized a variety of methods for collecting the NOx as nitrate or nitrite for isotopic analysis, and testing of some of these methods (including active and passive collections) reveal inconsistencies in efficiency of collection, as well as issues related to changes in conditions such as humidity, temperature, and NOx fluxes. A recently developed method allows for accurately measuring the nitrogen isotopic composition of NOx (NOx = NO + NO2) after capturing the NOx in a potassium permanganate/sodium hydroxide solution as nitrate (Fibiger et al., Anal. Chem., 2014). The method has been thoroughly tested in the laboratory and field, and efficiently collects NO and NO2 under a variety of conditions. There are several advantages to collecting NOx actively, including the ability to collect over minutes to hourly time scales, and the ability to collect in environments with highly variable NOx sources and concentrations. Challenges include a nitrate background present in potassium permanganate (solid and liquid forms), accurately deriving ambient NOx concentrations based upon flow rate and solution concentrations above this variable background, and potential interferences from other nitrogen species. This method was designed to collect NOx in environments with very different emission source loadings in an effort to isotopically characterize NOx sources. Results to date suggest very different values, and less variability than previous work, particularly for vehicle emissions. Ultimately, we aim to determine whether the influence of NOx sources can be quantitatively tracked in the environment.