C11B-0758
Imaging Basal Crevasses at the Grounding Line of Whillans Ice Stream, West Antarctica

Monday, 14 December 2015
Poster Hall (Moscone South)
Robert W Jacobel1, Emma C Dawson1 and Knut Christenson1,2, (1)St. Olaf College, Northfield, MN, United States, (2)University of Washington, Earth and Space Sciences, Seattle, WA, United States
Abstract:
We acquired gridded ground-based radar data at the WIS grounding zone where the transition from limited- or no-slip conditions at the base of grounded ice to free-slip conditions beneath floating ice occurs across a region only a few kilometers wide. This transition is either an elastic-flexural transition from bedrock to hydrostatically-supported elevations (often tidally influenced), a transition from thicker to thinner ice over a flat bed, or some combination of these. In either case, the stress field of the ice changes as it flows across the grounding zone, often resulting in brittle deformation, which is manifested as basal crevassing at the ice-sheet base and sometimes as strand cracks at the surface. The position and morphology of these features reveal important information about the stress state across this transition where ice and ocean interact.

Our surveys indicate a complex pattern of basal crevassing with many imaged in two or more profile segments as a linear feature at the bed, usually trending oblique to flow and often extending for several kilometers. Due to the wide beam pattern of our antennas, we image many of the crevasses from off-nadir reflections. Thus their arrival times are later than the primary basal reflection and segments of the crevasse appear “below” the bed, when in fact they are merely trending oblique to the profile. Often these returns have a reversed phase relative to the bed echo because the high dielectric contrast of seawater and a favorable geometry enable reflections with little loss (but a second phase reversal) from the ice-water interface near the crevasse base. In a few cases, these crevasse echoes from targets trending oblique to the profile appear to mimic the geometry of a sub-ice sediment “wedge”, while in reality the radar never penetrates below the basal interface. Only about 25% of the crevasses appear to extend any significant distance upward into the basal ice, typically at low angles. A subset of these are doubly imaged by direct returns as well as by delayed reflections from the bright planar basal interface, giving curious mirror-like signatures.

Our results indicate that basal crevasses offer a rich dataset for diagnosing basal stress state across ice-sheet grounding zones and that special care is needed when interpreting subglacial returns in radar data.