C53D-07
The Effect of Changes in Polar Sea Ice on Emissions of Marine Aerosols
Friday, 18 December 2015: 15:10
3007 (Moscone West)
Patricia Matrai, Bigelow Lab for Ocean Sciences, East Boothbay, ME, United States and Albert Jerome Gabric, Griffith University, Nathan, QLD, Australia
Abstract:
Cloud radiative effects remain a major weakness in our understanding of the climate system and consequently in developing accurate climate projections. This is mainly true for Arctic low–level clouds in their key role of regulating surface energy fluxes which affect the freezing and melting of sea ice. The radiative properties of clouds are strongly dependent on the number concentration of airborne water-soluble particles, known as cloud condensation nuclei (CCN). In the Arctic, the aerosol-cloud-radiation relationship is more complex than elsewhere and the clouds constitute a warming factor for climate, rather than cooling, most of the year. This is due to the semi-permanent ice cover, which raises the albedo of the surface, and the clean Arctic air, which decreases the albedo of the clouds. There has been much discussion on the relative magnitude of the biogenic source of polar CCN: Primary organic marine aerosols and/or sulfate-containing aerosols, derived from marine emissions. Regional field measurements and pan- (Ant)Arctic model simulations don’t necessarily agree. Arctic CCN are formed primarily by aggregates of marine organic material and may grow in mass by condensation. Southern Ocean aerosols may be dominated by sulfate particles and organic particles at lower and higher Antarctic latitudes, respectively. The interaction of polar marine microorganisms, seasonality, sea ice cover, presence or absence of sea spray, and atmospheric heterogeneous processes combine to control natural aerosol concentrations and mass, thus modulating the sensitivity of cloud properties, including their reflectivity and the resulting regional radiation budget. We discuss Arctic and Antarctic field and satellite observations and establish a strong and fundamental link between the biology at the ocean/sea ice interface, clouds and climate over polar regions.