B23I-07
Groundwater-Surface Water Mixing Shifts Ecological Assembly Processes and Stimulates Organic Carbon Turnover

Tuesday, 15 December 2015: 15:10
2008 (Moscone West)
James Stegen, Pacific Northwest National Lab, Microbiology Group, Biological Sciences Division, Richland, WA, United States
Abstract:
Environmental transitions often result in resource mixtures that overcome limitations to microbial metabolism, resulting in biogeochemical hot spots and moments. Riverine systems where groundwater mixes with surface water (the hyporheic zone) are spatially complex and temporally dynamic, making development of predictive models challenging. Spatial and temporal variations in hyporheic zone microbial communities are a key, but understudied, component of riverine biogeochemical function. To investigate the coupling among groundwater-surface water mixing, microbial communities, and biogeochemistry we applied ecological theory, aqueous biogeochemistry, DNA sequencing, and ultra-high resolution organic carbon profiling to field samples collected across times and locations representing a broad range of mixing conditions. Our results indicate that groundwater-surface water mixing in the hyporheic zone simultaneously (i) stimulated heterotrophic respiration, (ii) altered organic carbon composition, (iii) caused ecological processes to shift from stochastic to deterministic, and (iv) selected for microbial taxa capable of degrading a broad suite of organic compounds.