V23A-3064
Rhyolite lava fracturing and degassing induced spherulitic growth of Sawajiriwan and Sanukayama lavas in Kozushima Island, Japan

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Kuniyuki Furukawa, Aichi University, Aichi, Japan, Koji Uno, Okayama University, Okayama, Japan and Tatsuo Kanamaru, Nihon University, Tokyo, Japan
Abstract:
Sawajiriwan and Sanukayama rhyolite lavas are distributed along west and east coasts of Kozushima Island, Japan, respectively (Taniguchi, 1977). They were erupted in about 40,000-50,000 years ago (Yokoyama et al., 2004). The both lavas are characterized by alignment of spherulites as well as previous works (Seaman et al., 2009; Clay et al., 2013). Seaman et al. (2009) attributed the spherulite alignment to the contrasting water concentration and concluded that the heterogeneity of water contents has already achieved within the magma chamber. In this study, we propose that development of the spherulite alignment is significantly related to the fracturing within the lavas.

 In Sawajiriwan lava, the distal part is well exposed and shows ramp structure and reverse faults with ductile-deformed fault planes. The both structures were formed within consistent compressional stress deduced from their geometry. Discrepancy of the structure would be attributed to the strain rate variation within the advancing lava. The spherulite alignment is characteristically developed along the planes. This indicates that the fractures acted as degassing pathway, and the part achieved large undercooling. The fault planes would be healed and deformed after decreasing strain rate, and spherulites were eventually grown along the planes.

 In Sanukayama lava, the ductile-deformed cataclastic faults are often developed as well as Sawajiriwan lava. The cataclasite is composed of porphyroclasts and nano- and micro-scale fine particles such as microlite and crystalline fragments. Microscopic observation clearly showed that the fine particles are released from the fault margin into the surrounding melt and are aligned along the flow line. Spherulites typically nucleated on the aligned fine particles, and consequently spherulite alignment was developed. We concluded from the lavas that development of the spherulite alignment is significantly related to the fracturing within the lavas.