T14A-05
Seismically imaging the structural legacy of rifting and collision events in the central and eastern U.S. crust

Monday, 14 December 2015: 17:00
302 (Moscone South)
Brandon Schmandt1, Fan-Chi Lin2 and Karl E Karlstrom1, (1)University of New Mexico Main Campus, Albuquerque, NM, United States, (2)University of Utah, Salt Lake City, UT, United States
Abstract:
EarthScope’s USArray now provides broadband seismic data across the contiguous U.S. and southeastern Canada. We used teleseismic receiver functions and surface wave tomography to map crustal structure beneath the entire array. Crust thickness was estimated with multi-mode Ps receiver function images using <0.5 Hz Ps and <0.25 Hz 2p1s and 2s1p reverberations between the free-surface and Moho. In areas of sedimentary basins or large impedance contrasts in the middle crust the reverberations alone often provide clearer images of the Moho than the Ps mode, because of interference from conversions at shallow interfaces is reduced at greater lag times. The new results enable large-scale comparison of the structural legacy of multiple rifting and collision events in eastern North America. Some Proterozoic rift segments defined by Bouguer gravity and surface geology maintain locally thin crust while others lack correlated Moho topography or are areas of locally thicker crust. Locally thin crust is found at southern end of the mid-continent rift (MCR) in northern Kansas and southern Nebraska, along the Reelfoot rift, and beneath inferred rifts in Michigan, Indiana, and Ohio. The Oklahoma aulacogen is not associated with a coherent change in crust thickness along its length, at least at a scale resolvable by USArray data and our imaging approach. The MCR extending northeast from Nebraska to Lake Superior has locally thicker crust, consistent with other recent results. We suggest that magmatic additions to the lower crust overwhelmed extension in the northern mid-continent rift, but not the rift segments further south and east. Collision events of the Grenville orogeny and Paleozoic orogens that created the Appalachian Mountains are still associated with ~45-55 km thick crust extending from the Grenville front eastward across the Appalachian Mountains to the fall line that marks the abrupt geomorphic transition to the coastal plains. Despite the ~45-55 km crust thickness long-wavelength elevations (>50 km) across this area rarely exceed 1 km. Along the fall line we find ~15-20 km of seaward thinning that is coherent from Alabama to Pennsylvania, with a transition width similar to or less than the ~70 km.