H52F-04
Tracking CO2 Plume in Deep Saline Formations Utilizing a Time-lapse Pressure Tomography Approach
Friday, 18 December 2015: 11:05
3018 (Moscone West)
Linwei Hu, ETH Swiss Federal Institute of Technology Zurich, Earth Sciences, Zurich, Switzerland
Abstract:
CO2 storage in deep saline formations is considered as an attractive option to cut down greenhouse gas emissions. Among the major challenges is the development of efficient technologies for controlling and monitoring the evolution of CO2 plumes during and after injection in the underground. As an alternative to the most commonly used geophysical approaches for subsurface characterization, we propose a pressure-based tomographical approach to track CO2 plume history. By taking into account the direct relationship between saturation and flow properties, pressure tomography has the potential not only to detect a plume but also to estimate the saturation of CO2. The experimental set-up of pressure tomography involves injection of brine or CO2 at variable depths (sources). We use a time-lapse approach, considering first the CO2-free formation, and then the multi-phase CO2-brine system. By applying a rapid eikonal-based inversion technique, pressure fluctuations at observation locations (receivers) are utilized to reconstruct the spatial distribution of the apparent single-phase and mixed-phase diffusivity. Evolution of the plume shape is then delineated by comparison of diffusivity tomograms derived from different times. Finally, an integrated value of CO2 saturation within the plume is obtained by means of a single-phase proxy. Applicability of this novel approach is evaluated in different virtual formations. The time-lapse pressure tomographic investigation revealed that knowledge about the spatial heterogeneity of permeability has a remarkable impact on proper characterization of plume shape.