EP14B-03
The Reloca Slide offshore Central Chile (35.5°S) - a Revision Based on Geotechnical Sliding Plane Characterization and Tsunami Modeling

Monday, 14 December 2015: 16:30
2003 (Moscone West)
David Voelker1, Achim Kopf2, Matt Ikari2 and Sebastian Trütner3, (1)University of Bremen, Bremen, Germany, (2)MARUM - University of Bremen, Bremen, Germany, (3)MARUM, University of Bremen, Bremen, Germany
Abstract:
Reloca Slide is a submarine failure of ~ 24 km3 volume at the lower slope of the continental margin of Central Chile. The sliding event appears to be of post-Last Glacial Maximum (LGM) age. The evacuation site exhibits a 30° steep and 2000 m high failure plane, the slide deposits in the Chile Trench are preserved as scattered 10-600 m high angular blocks incorporated in a ~60 m high debris fan. The combination of a steep and high failure surface (high velocity) and the apparent cohesiveness of the displaced material (little disintegration) makes Reloca Slide a likely source for a local tsunami. Our numerical simulations show that a comparable event at the lower slope would generate waves of > 8 m offshore amplitude that would impact the Chilean coast within ~25 minutes.

Reloca Slide is unique along the Central Chilean margin by its size and particular morphology. Yet, much of the unfailed lower slope along a ~1500 km long stretch shares general morphology, tectonic situation and sedimentary properties with the Reloca Slide source region. It is therefore of high relevance for risk mitigation to understand preconditioning factors and triggering mechanisms of as critical boundary conditions for similar potential future events.

Core samples were taken directly from the failure plane, oedometer tests indicate a former burial depth of ~ 500 m. Samples are used to run geotechnical experiments for an improved understanding of the mechanics of the failure process. We are particularly interested in the question of whether the failure of the lowermost slope is a continuing process linked to the subduction of the Nazca Plate (e.g. a process needed to re-establish a critically tapered accretionary wedge), or, alternatively, if it is related to particular local conditions or an exceptional triggering event. We report on results from direct and rotary shear experiments to characterize frictional properties and strength of the materials at the detachment surface of the slide.