PP31D-02
Sensitivity of permafrost carbon release to past climate change in Arctic Alaska
Wednesday, 16 December 2015: 08:15
2003 (Moscone West)
Benjamin Gaglioti1, Daniel H Mann1, Matthew J Wooller1, Benjamin M Jones2, Louise Melanie Farquharson1 and John Pohlman3, (1)University of Alaska Fairbanks, Fairbanks, AK, United States, (2)Alaska Science Center, U.S. Geological Survey, Anchorage, AK, United States, (3)USGS Coastal and Marine Science Center Woods Hole, Woods Hole, MA, United States
Abstract:
Warming may cause arctic permafrost to thaw and release large stores of carbon (C) downstream and into the atmosphere. Documenting how permafrost-C release responded to prehistoric warming events can help determine its sensitivity to future climate change. We did this by first quantifying past climate change in Arctic Alaska over the last 15,000 years using oxygen isotope ratios in ancient wood cellulose, which is a proxy for summer temperatures and moisture sources. We then used radiocarbon (14C) age-offsets in lake sediment to determine how much permafrost C was being released over this same time period. A 14C age-offset is the difference between the true age of deposition determined by the 14C ages of delicate, terrestrial plant remains and the age of bulk sediment from the same stratigraphic layer. This bulk sediment contains ancient C derived from permafrost in the lake’s watershed. Shifts in the magnitude of the age-offset over time provide a proxy for changes in the relative amount of permafrost C being released. Today, the age-offset in our study lake is 2,000 calibrated years before present (cal yr BP), which is the lowest it has been over the last 15,000 years. During the warmer-than-present, Bølling-Allerød period (BA; 14,700-12,900 cal yr BP), and the Holocene Thermal Maximum (HTM; 11,700-8,500 cal yr BP), the age offset reached 4,000-6,000 cal yr, indicating large inputs of ancient C to the lake via permafrost thaw. This enhanced input of ancient C was interrupted during the cold and dry Younger Dryas interval (YD; 12,900-11,700 cal yr BP). Interestingly, age-offsets during the YD were similar to today’s, suggesting that the insulating peat layer now covering much of the LOP watershed is stabilizing permafrost C in the face of recent warming. However, this buffering capacity has a limit, and judging by the heightened influx of permafrost C during the HTM, this limit may be reached if summer temperatures warm a further 2-3°C. Temperature and effective moisture responses to sea ice loss in the region was a likely mechanism that controlled the sensitivity of ancient carbon release to past climate forcing.