P31C-2075
Deriving Lava Eruption Temperatures on Io Using Lava Tube Skylights

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Ashley Gerard Davies, Jet Propulsion Laboratory, Pasadena, CA, United States, Laszlo P Keszthelyi, USGS Astrogeology Science Center, Flagstaff, AZ, United States and Alfred S McEwen, University of Arizona, Tucson, AZ, United States
Abstract:
The eruption temperature of Io’s silicate lavas constrains Io’s interior state and composition [1] but reliably measuring this temperature remotely is a challenge that has not yet been met. Previously, we established that eruption processes that expose large areas at the highest temperatures, such as roiling lava lakes or lava fountains, are suitable targets for this task [2]. In this study we investigate the thermal emission from lava tube skylights for basaltic and ultramafic composition lavas. Tube-fed lava flows are known on Io so skylights could be common. Unlike the surfaces of lava flows, lava lakes, and lava fountains which all cool very rapidly, skylights have steady thermal emission on a scale of days to months. The thermal emission from such a target, measured at multiple visible and NIR wavelengths, can provide a highly accurate diagnostic of eruption temperature. However, the small size of skylights means that close flybys of Io are necessary, requiring a dedicated Io mission [3]. We have modelled the thermal emission spectrum for different skylight sizes, lava flow stream velocities, end-member lava compositions, and skylight radiation shape factors, determining the flow surface cooling rates. We calculate the resulting thermal emission spectrum as a function of viewing angle. From the resulting 0.7:0.9 μm ratios, we see a clear distinction between basaltic and ultramafic compositions for skylights smaller than 20 m across, even if sub-pixel. If the skylight is not resolved, observations distributed over weeks that show a stationary and steady hot spot allow the presence of a skylight to be confidently inferred. This inference allows subsequent refining of observation design to improve viewing geometry of the target. Our analysis will be further refined as accurate high-temperature short-wavelength emissivity values become available [4]. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA. We thank the NASA OPR Program for support. References: [1] Keszthelyi et al. (2007) Icarus, 192, 491-502. [2] Davies et al. (2012) GRL, 38, L21308. [3] McEwen et al. (2015) The Io Volcano Observer (IVO), LPSC-46, abstract 1627. [4] Ramsey and Harris (2015) IAVCEI-2015, Prague, Cz. Rep., abstract IUGG-3519.