G53A-08
Multiple Geodetic Observations for Identifying Glacial Isostatic Adjustment and the Causes of Sea-Level Change

Friday, 18 December 2015: 15:25
2002 (Moscone West)
Mark E Tamisiea, National Oceanography Centre, Liverpool, United Kingdom
Abstract:
Understanding the Earth's and ocean's response to past changes in global ice extent and ocean volume, collectively termed glacial isostatic adjustment (GIA), is necessary for interpreting observations of present-day sea level change. GIA has the largest effect on sea-level observations nearest the locations of the former ice sheets. Under the former loading centers, crustal uplift contributes to a local relative sea-level fall while the collapsing forebulge surrounding these centers accentuates a local sea-level rise. Some of the longest tide gauge records are in these regions. However, GIA also causes global deformation and geoid changes that introduce systematic differences between global averages of tide gauge and altimetry observations.

Clearly accounting for the GIA contribution to sea-level change while identifying other present-day contributors is greatly assisted by additional geodetic measurements. Time-variable satellite gravity observations highlight the regional GIA signal, on length scales of hundreds of kilometers, while also locating water mass changes on the continents and the oceans. As the spatial density of GNSS observations has increased, it has become easier to discern the regional characteristics of crustal deformation (e.g. Blewitt et al. abstract in U009). Combined, these two observations allow for greater separation of GIA and water mass changes. More importantly for society, though, the regional crustal estimates could be combined with coastal altimetry products to create regional estimates of relative sea-level change, the observation most relevant for coastal planning.

In this presentation we discuss how the various geodetic measurements complement each other and allow us to identify various components of sea level change, including GIA. We illustrate how the weakness of any individual observation component can be overcome by comparison with the other components. A sustained and global geodetic observing system is essential for understanding the causes of sea-level rise.