G54A-04
Crustal Rebound due to Lake Mass Changes Measured by InSAR: Constraints on Lithosphere Rheology
Abstract:
SAR interferometry has proven to be a reliable method for detecting small displacements due to ground subsidence. Here, we relate ground motion around the lake Mead (Nevada, USA) and lake Siling Co (Tibet, China) measured by InSAR to water loading in order to constrain the rheology of the lithosphere.Lake Mead, an artificial reservoir, has been filled with water in 1935. We analyzed ~500 interferograms based on 62 ERS images and on 40 ENVISAT images acquired between 1992 and 2010. Interferograms are inverted to solve for the time series of ground motion in the lake Mead area. Temporal smoothing allows to reduce the turbulent atmospheric delays. Spatio-temporal series of the deformation from 1992 to 2010 show a broad subsidence pattern correlated with lake level from 1992 to 2010. We model the deformation, taking into account the water and sediment loading history of the lake since 1935. The two-layer visco-elastic model proposed by Kaufmann and Amelung (2000), with a mantle viscosity of 1018 Pa s, adjusts well the data up to 2001, but overpredicts the deformation after 2001. We will discuss the models that could explain the deformation evolution.
The Siling Co lake is the largest endorheic lake in Central Tibet. In 1972-1999 its water level remained stable, while it increased by about 1.0~m/yr in the period 2000-2006. The increased rate gradually stepped down to 0.2~m/yr in 2007-2011. We analysed 107 ERS and Envisat SAR images during the period 1992-2011. The deformation amplitude closely follows the lake level temporal evolution, except that subsidence continues in 2008-2011, while the lake level stagnated. This temporal evolution suggests a non elastic relaxation process taking place at a decade time-scale. Phase delay maps are used to constrain possible layered visco-elastic rheological models. An elastic model could partly explain the observed subsidence rate if elastic moduli are about twice lower than those extracted from Vp/Vs profiles. The surface deformation pattern is also extracted by projecting the phase delay maps against
the best-fit model temporal behavior. It shows that deep relaxation in the asthenosphere is negligible at the decade time-scale and
favors the existence of a ductile (1-3x1018Pa.s) channel in the deep crust above a more rigid mantle.