H22A-01
Multi-scale Laboratory Experimentation in Hydrologic Sciences– Challenges and Opportunities.

Tuesday, 15 December 2015: 10:20
2022-2024 (Moscone West)
Tissa H Illangasekare, Colorado School of Mines, Department of Civil and Environmental Engineering, Golden, CO, United States; Center for Experimental Study of Subsurface Environmental Processes (CESEP), Colorado School of Mines, Golden, CO, United States
Abstract:
Problems of water sustainability to meet the increasing needs of a growing world population, further exacerbated by climate change, will continually challenge hydrologists and other earth and environmental scientists. Significant theoretical, modeling, and computational advances, and technology developments for improved observations, monitoring, and characterization that have taken place during the last several decades have helped to meet some of these challenges. In parallel, field and laboratory studies for conceptualization, hypothesis testing, and model improvements have continued to advance hydrologic sciences. However, the data to study some of the problems in hydrology cannot always be obtained from field studies where many factors contribute to the uncertainty of measurements and parameter estimates. The primary thesis of this talk is that laboratory experiments conducted at multiple test scales will play an important role by providing new insights into complex processes and accurate data for model improvement, leading to increased accuracy and reliability of predictions. However, performing such controlled experiments poses many challenges such as acquiring data at different observational scales, capturing relevant features of geologic heterogeneity, mimicking field specific pressure and temperature dependent phase interactions in the laboratory, and simulating climate drivers, among others. Focusing on the subsurface and using examples from multiphase systems, coastal aquifer salinization, and land/atmospheric interactions, I will show how to design and implement theory-driven experiments to address some of these challenges. I will make the case that addressing problems in hydrology requires continuous interaction among laboratory and field studies and modeling. It is imperative that hydrologists work at the disciplinary interfaces related to earth, water, energy, and the environment to address current and emerging problems that are of global importance.