C11D-02
Antarctic Sea Ice Patterns and Its Relationship with Climate

Monday, 14 December 2015: 08:15
3007 (Moscone West)
Sandra Barreira, Argentine Hydrographic Service, Buenos Aires, Argentina
Abstract:
Antarctic sea ice concentration fields show a strong seasonal and interannual variation closely tied to changes in climate patterns. The Ross, Amundsen, Bellingshausen, and Weddell Seas during Summer-Autumn and the Southern Ocean regions north of these areas during Winter-Spring have the greatest sea ice variability. Principal components analysis in T- mode, Varimax-rotated applied on Antarctic monthly sea ice concentration anomaly (SICA) fields for 1979-2015 (NASA Team algorithm data sets available at nsidc.org) revealed the main spatial characteristics of Antarctic sea ice patterns and their relationship with atmospheric circulation. This analysis yielded five patterns of sea ice for winter-spring and three patterns for summer-autumn, each of which has a positive and negative phase. To understand the links between the SICA patterns and climate, we extracted the mean pressure and temperature fields for the months with high loadings (positive or negative) of the sea ice patterns. The first pattern of winter-spring sea ice concentration is a dipole structure between the Drake Passage and northern regions of the Bellingshausen and Weddell Seas and, the South Atlantic Ocean. The negative phase shows a strong negative SICA over the Atlantic basin. This pattern can be associated with to the atmospheric structures related to a positive SAM index and a wave-3 arrangement around the continent. That is, a strong negative pressure anomaly centered over the Bellingshausen Sea accompanied by three positive pressure anomalies in middle-latitudes. For summer-autumn, the first pattern shows two strong positive SICA areas, in the eastern Weddell Sea and the northwestern Ross Sea. A negative SICA covers the Amundsen-Bellingshausen Seas and northwest of the Antarctic Peninsula. This pattern, frequently seen in summers since 2008, is associated with cool conditions over the Weddell Sea but warmer temperatures and high surface air pressure west, north and northwest of the Peninsula.