SH23B-2450
Solar irradiance observed on the FY-3 satellites – instrument overview and primary observation results of in-orbit experiments

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Hongrui Wang, CIOMP Changchun Institute of Optics, Fine Mechanics and Physics, CAS, Changchun, China
Abstract:
Solar driving mechanism for Earth climate has been a controversial problem for centuries. Data of Solar Irradiance (SI) is required by the investigations of the solar driving mechanism, including Total Solar Irradiance (TSI) and Spectral Solar Irradiance (SSI). SI observations with short term accuracy and long term precision are essential to separate solar forcing from human-induced factors.

TSI and SSI have been measured on Chinese FY-3 satellites, including FY-3A, FY-3B and FY-3C. FY-3A satellite launched in May, 2008 is the first satellite. FY-3B satellite launched in November, 2010 is the second satellite and FY-3C satellite launched in September, 2013 is the third satellite.

SSI has been measured by SBUS (Solar Backscatter Ultraviolet Sounder) in the ultraviolet spectrum in the FY-3 mission. When a solar diffuser plate is deployed to reflect the incoming sunlight, SI is measured at 12 discrete, 1.1 nm wide wavelength bands between 250 nm and 340 nm. The SSI measurements are performed using a double monochromator operated in a stepped wavelength scan mode. SBUS collects SSI weekly at 12 discrete wave-lengths near polar area. Moreover, SSI is measured by SBUS every month covering 160-400 nm continuous spectral region. SSI has been recorded in SBUS missions since the ascending phase of Solar Cycle 24. Approximately the same variation tendencies of SSI were detected by SBUS in specific spectrum compared with data from SOLSTICE/SORCE.

TSI have been recorded by Total Solar Irradiance Monitors (TSIM) in FY-3 missions. The sun was measured by TSIM/FY-3A and TSIM/FY-3B in a scanning manner. TSI data quality is improved by TSIM/FY-3C which has a pointing system. TSIM/FY-3C measures the sun with nearly zero solar pointing errors. TSI variations detected by TSIM/FY-3C are nearly the same with VIRGO/SOHO and TIM/SORCE. The TSIM experiments have observed the sun for about 7 years. A slowly increasing TSI trend has been detected by TSIMs in the Solar Cycle 24.

We present the instrument system overview and observation results of space experiments in this abstract.