SM22A-03
Two states of magnetotail dipolarization fronts: A statistical study
Tuesday, 15 December 2015: 10:44
2018 (Moscone West)
Daniel Schmid1,2, Rumi Nakamura1, Ferdinand Plaschke1, Martin Volwerk1 and Wolfgang Baumjohann1, (1)Space Research Institute, Austrian Academy of Sciences, Graz, Austria, (2)University of Graz, NAWI, Graz, Austria
Abstract:
We study the ion density and temperature in the predipolarization and postdipolarization plasma sheets in the Earth's magnetotail using 9 years (2001–2009) of Cluster data. For our study we selected cases when Cluster observed dipolarization fronts (DFs) with an earthward plasma flow greater than 150km/s. We perform a statistical study of the temperature and density variations during the DF crossings. Earlier studies concluded that on average, the temperature increases while the density decreases across the DF. Our statistical results show a more diverse picture: While ∼54% of the DFs follow this pattern (category A), for ∼28% the temperature decreases while the density increases across the DF (category B). We found an overall decrease in thermal pressure for category A DFs with a more pronounced decrease at the DF duskside, while DFs of category B showed no clear pattern in the pressure change. Both categories are associated with earthward plasma flows but with some difference: (1) category A flows are faster than category B flows, (2) the observations indicate that category B flows are directed perpendicular to the current in the near-Earth current sheet while category A flows are tilted slightly duskward from this direction, and (3) the background Bz of category B is higher than that of category A. Based on these results, we hypothesize that after reconnection takes place, a bursty bulk flow emerges with category A characteristics, and as it travels earthward, it further evolves into category B characteristics, which is in a more dipolarized region with slower plasma flow (closer to the flow-braking region).