PP43E-03
Running hotter, faster, shallower: acceleration of the marine nitrogen cycle from the Last Glacial Maximum to the pre-industrial, and implications for the future
Thursday, 17 December 2015: 14:10
2012 (Moscone West)
Eric D Galbraith, ICREA Catalan Institution for Research and Advanced Studies, Barcelona, Spain
Abstract:
Biologically-available nitrogen is the primary limiting nutrient in the global ocean. The complex physical-biological interdependencies of nitrogen fixation and denitrification, the source and sink of bioavailable nitrogen, have led to uncertainty over their future trajectories under higher CO2. Sedimentary nitrogen isotope evidence suggests that the global rate of denitrification was on the order of 50% lower during the last glacial maximum, and reveals that significant changes in denitrification have occurred on a decadal-centennial timescale. Coupled atmosphere-ocean-biogeochemistry models simulate similar changes, through physically-driven changes in anoxia, which then feed back on nitrogen fixation through the availability of phosphorus to diazotrophs. In addition, diazotroph culture experiments suggest that nitrogen fixation was further limited during glacial maxima by low CO2, causing an additional slowdown of the nitrogen cycle. The emergent picture suggests that deglaciation accelerated both sides of the N cycle, with more rapid loss encouraged by expanded shallow anoxia, and more rapid gain encouraged by higher CO2. It will be argued that the net effect on the nitrogen inventory can be approximated by knowing the distribution of surface ocean PO4, given the observed correlation of surface PO4 concentrations on the P:C ratio of exported organic matter.