S54B-07
Mic Flocks in the Cloud: Harnessing Mobile Ubiquitous Sensor Networks

Friday, 18 December 2015: 17:30
307 (Moscone South)
Milton A Garces, University of Hawaii at Manoa, Honolulu, HI, United States and Anthony Christe, University of Hawaii at Manoa, Information and Computer Sciences, Honolulu, HI, United States
Abstract:
Smartphones provide a commercial, off-the-shelf solution to capture, store, analyze, and distribute infrasound using on-board or external microphones (mics) as well as on-board barometers. Free iOS infrasound apps can be readily downloaded from the Apple App Store, and Android versions are in progress. Infrasound propagates for great distances, has low sample rates, and provides a tractable pilot study scenario for open distributed sensor networks at regional and global scales using one of the most ubiquitous sensors on Earth – microphones. Data collection is no longer limited to selected vendors at exclusive prices: anybody on Earth can record and stream infrasound, and the diversity of recording systems and environments is rapidly expanding. Global deployment may be fast and easy (www.redvox.io), but comes with the cost of increasing data volume, velocity, variety, and complexity. Flocking - the collective motion of mobile agents – is a natural human response to threats or events of interest. Anticipating, modeling and harnessing flocking sensor topologies will be necessary for adaptive array and network processing. The increasing data quantity and complexity will exceed the processing capacity of human analysts and most research servers. We anticipate practical real-time applications will require the on-demand adaptive scalability and resources of the Cloud. Cloud architectures for such heterogeneous sensor networks will consider eventual integration into the Global Earth Observation System of Systems (GEOSS).