Imaging segmentation along the Cascadia subduction zone

Tuesday, 15 December 2015: 13:40
305 (Moscone South)
Richard M Allen1, William Bythewood Hawley2 and Robert Martin-Short2, (1)UC Berkeley Seismological Laboratory, Berkeley, CA, United States, (2)University of California Berkeley, Berkeley, CA, United States
As we learn more about the Cascadia subduction zone, there is clear evidence for segmentation in the character of the many physical processes along its 1000 km length. There is segmentation in the arc magmas, in the seismicity, episodic tremor and slip, crustal structure and mantle structure all the way down to ~400 km depth. What is striking is the fact that the segment boundaries for these processes at depths of a few kilometers to hundreds of kilometers align. We must determine if this is coincidence, or if not, what the causative process is.

The seismic deployments of the Cascadia Initiative onshore and offshore allow us to image the structure of the subduction zone, including the incoming Juan de Fuca plate, with unprecedented resolution. We use data from three one-year deployments of 70 ocean bottom seismometers across the Juan de Fuca plate, along with hundreds of onshore stations from the Pacific Northwest Seismic Network, the Berkeley Digital Seismic Network, the Earthscope Transportable Array, and smaller temporary seismic deployments.

Our 3D tomographic models show significant variation in the structure of the subducting slab along its length. It extends deepest in the south (the Gorda section) where the plate is youngest, and shallows to the north across southern Oregon. There is a gap in the slab beneath northern Oregon, which appears to correlate with the geochemistry of the arc magmas. The slab is then visible again beneath Washington. We also constrain mantle flow paths using shear-wave splitting measurements at the offshore and onshore seismic stations. Beneath the Juan de Fuca plate the flow is sub-parallel to the motion of the plate. However, beneath the Gorda section of the Juan de Fuca place the flow is sub-parallel to the motion of the Pacific plate, not the Juan de Fuca plate. We are thus beginning to image a complex mantle flow pattern that may also play a role in the observed segmentation.