PA43C-2202
Don't Forget Kīlauea: Explosive Hazards at an Ocean Island Basaltic Volcano

Thursday, 17 December 2015
Poster Hall (Moscone South)
Donald A Swanson, Hawaiian Volcano Observatory, Hawaii National Park, HI, United States and Bruce F Houghton, University of Hawaii at Manoa, Honolulu, HI, United States
Abstract:
Kīlauea alternates between periods of high and low magma supply rate, each period lasting centuries. The low rate is only a few percent of the high rate. High supply rate, typified by the past 200 years, leads to frequent lava flows, elevated SO2 emission, and relatively low-hazard Hawaiian-style explosive activity (lava fountains, spattering). Periods of low magma supply are very different. They accompany formation and maintenance of a deep caldera, the floor of which is at or below the water table, and are characterized by phreatomagmatic and phreatic explosive eruptions largely powered by external water. The low magma supply rate results in few lava flows and reduced SO2 output. Studies of explosive deposits from the past two periods of low magma supply (~200 BCE–1000 CE and ~1500–1800 CE) indicate that VEIs calculated from isopach maps can range up to a low 3. Clast-size studies suggest that subplinian column heights can reach >10 km (most recently in 1790), though more frequent column heights are ~5–8 km. Pyroclastic density currents (PDCs) present severe proximal hazards; a PDC in 1790 killed a few hundred people in an area of Hawaiʻi Volcanoes National Park today visited by 5000 people daily. Ash in columns less than about 5 km a.s.l. is confined to the trade-wind regime and advects southwest. Ash in higher columns enters the jet stream and is transported east and southeast of the summit caldera. Recurrence of such column heights today would present aviation hazards, which, for an isolated state dependent on air transport, could have especially deleterious economic impact. There is currently no way to estimate when a period of low magma supply, a deep caldera, and powerful explosive activity will return. Hazard assessments must take into account the cyclic nature of Kīlauea's eruptive activity, not just its present status; consequently, assessments for periods of high and low magma supply rates should be made in parallel to cover all eventualities.