GC21A-1079
Interspecific Competition and Trade-offs in Resource Allocation are the Key to Successful Growth of Seedlings of White Spruce (Picea glauca (Moench) Voss) at Subarctic Treelines in Warming Alaska.
Tuesday, 15 December 2015
Poster Hall (Moscone South)
Kyoko Okano and Marion Syndonia Bret-Harte, University of Alaska Fairbanks, Fairbanks, AK, United States
Abstract:
Alpine treelines in Alaska have advanced for the past 50 years in response to the recent climate warming. However, further increases in temperatures may cause treeline species drought stress and increase susceptibility to insect outbreaks and fire. Complex factors such as soil conditions and plant species composition also impact the growth of seedlings, which are essential to sustain boreal forests. Our goals were to assess 1) the current optimal elevation for the treeline species Picea glauca (white spruce) seedlings and how it is altered by climate change, and 2) their growth/survival strategies at each environmental site. We studied the growth response of spruce seedlings along an altitudinal gradient at 6 sites, consisting of tundra, forest, or transitional ecotone in Denali National Park and one forest site in Fairbanks, AK. In May 2012, four-month old seedlings were planted with or without naturally occurring plants to compare the presence or absence of the interspecific interaction. Summer temperatures were increased by one small greenhouse per site. Over 2 growing seasons, growth was measured non-destructively, and then the seedlings were harvested. Relative growth rate (RGR) in height was increased significantly as the altitude was increased. Elevated temperature increased height only in seedlings at a high-altitude forest. Seedlings with neighboring plants had a higher RGR in height than seedlings that had neighbors removed, while significantly wider diameters were measured from the seedlings without neighbors. A weak trend of declining diameter width with increasing altitudes was seen. Seedlings that grew taller did not grow their stems wider, indicating trade-offs in resource allocation. None of the altitudinal sites had a clear advantage for the growth of the seedlings. Habitat microclimate and the interaction with other species could be more important than the altitude or temperatures and hence, key to the survival and growth of spruce seedlings in this region.