GP51B-1331
Magnetostratigraphic Dating of Paleogene Sediments in the Seymour Island (Antarctic Peninsula): A Preliminary Chronostratigraphy

Friday, 18 December 2015
Poster Hall (Moscone South)
Elisabet Beamud1, Manuel Jesus Montes2, Sergio Santillana3, Francisco Nozal2 and Sergio Marenssi3, (1)University of Barcelona, Barcelona, Spain, (2)Instituto Geologico Minero Espana, Madrid, Spain, (3)Instituto Antártico Argentino, Buenos Aires, Argentina
Abstract:
Seymour Island is located at 64 º S, close to the northeastern tip of the Antarctic Peninsula. This glacier-free island contains the southernmost exposures of the K/Pg boundary and it has the most complete record of the Paleogene in Antarctica. The base of the Paleogene is represented by the Early Paleocene shallow marine shelf deposits of the Marambio Group; which are unconformably overlain by the Late Paleocene to Late Eocene Seymour Island Group. The Marambio Group is divided into the quartz-rich silty sandstones and mudstones of the López de Bertodano Fm and the mudstones to quartz-rich sandstones of the Sobral Fm. The overlaying Seymour Island Group records the erosion and filling of incised valleys. This group is made up by the Cross Valley-Wiman, La Meseta and the uppermost new Submeseta Formations. Main regressive periods are evidenced by the erosional unconformities and their related time gaps at the base of these three Formations. The La Meseta and Submeseta Formations are composed by poorly consolidated marine sandstones and siltstones deposited in a shallow coastal (possibly estuarine) environment. Several biostratigraphic and isotopic studies have been conducted in the Seymour Island due to its extremely rich fossil record, and the age of the López de Bertodano Fm has been recently refined by magnetostratigraphy. However, the overlying Paleogene formations lack a reliable absolute continuous dating. To solve this problem, a composite magnetostratigraphic section spanning more than 1300 m from the K/Pg boundary up to the top of the Submeseta Fm was conducted, with an average sampling resolution of 3 m per site. Although many samples yielded weak results, a local magnetostratigraphy was obtained which has been correlated to the GPTS. The new derived ages range from Danian (~ 66 Ma) up to Priabonian (~ 34 Ma). These results have been integrated with previous litho-, bio- and isotopic data to build a new Paleogene chronostratigraphy for the Seymour Island.