A51F-0116
Organization of the Tropical Convective Cloud Population by Humidity and the Critical Transition to Heavy Precipitation

Friday, 18 December 2015
Poster Hall (Moscone South)
Matthew Igel, University of Miami, Miami, FL, United States
Abstract:
The tropical atmosphere exhibits an abrupt statistical switch between non-raining and heavily raining states as column moisture increases across a wide range of length scales. Deep convection occurs at values of column humidity above the transition point and induces drying of moist columns. With a 1km resolution, large domain cloud resolving model run in RCE, what will be made clear here for the first time is how the entire tropical convective cloud population is affected by and feeds back to the pickup in heavy precipitation. Shallow convection can act to dry the low levels through weak precipitation or vertical redistribution of moisture, or to moisten toward a transition to deep convection. It is shown that not only can deep convection dehydrate the entire column, it can also dry just the lower layer through intense rain. In the latter case, deep stratiform cloud then forms to dry the upper layer through rain with anomalously high rates for its value of column humidity until both the total column moisture falls below the critical transition point and the upper levels are cloud free. Thus, all major tropical cloud types are shown to respond strongly to the same critical phase-transition point. This mutual response represents a potentially strong organizational mechanism for convection, and the frequency of and logical rules determining physical evolutions between these convective regimes will be discussed. The precise value of the point in total column moisture at which the transition to heavy precipitation occurs is shown to result from two independent thresholds in lower-layer and upper-layer integrated humidity.