C53A-0755
Diurnal Wind Regimes and Lapse-Rate Variability Over Clean and Debris-Covered Ice

Friday, 18 December 2015
Poster Hall (Moscone South)
Gwenn E Flowers and Erik Young, Simon Fraser University, Burnaby, BC, Canada
Abstract:
Near-surface winds and air temperature play an important role in the surface energy balance of glaciers and ice sheets, and can be highly variable in space and time. The increasing fraction of debris-covered ice observed in many retreating alpine glacier environments motivates the study of these variables, and the processes that control them, over both clean and debris-covered ice.

We use meteorological data collected in the ablation zone of a ~ 5km-long valley glacier in Yukon, Canada, to analyze the diurnal variability of temperature and wind regimes over debris-covered and debris-free ice. Our data reveal pronounced diurnal cycles in temperature lapse rates, wind speeds, and wind directions. Common to both clean and debris-covered areas are: (1) a shallowing of lapse rates in the early morning from 6:00 to 9:00 and a steepening of lapse rates during the day from 9:00 to 16:00, (2) nearly identical lapse rates regardless of surface type between 15:00 and 19:00, and (3) a persistent diurnal wind regime in which up-valley winds occur from late morning to evening, peaking at 16:00-17:00, and relatively weaker down-valley winds occur overnight. Significant differences between the clean-ice and debris-covered sites are also evident in the data, namely: (1) much steeper night-time lapse rates over debris-covered ice than clean ice, (2) the occurrence of steepest lapse rates overnight for debris-covered ice and in late afternoon (around 16:00) for clean ice, and (3) a more pronounced diurnal cycle in windspeed over debris-covered ice than clean ice, despite all stations exhibiting evidence of the diurnal changes in wind direction.

The patterns described above conform to a model of weak katabatic flow at night and relatively stronger up-valley winds during the day, peaking in late afternoon. Though absolute temperatures over clean and debris-covered ice are markedly different during the day, lapse rates over both surfaces evolve similarly through the day to achieve steep (< −9K/km) and nearly identical values in late afternoon when up-valley winds are strongest. We have yet to explore the implications of the diurnal cycles described above for the surface energy balance and our ability to model it, but speculate that what we have observed is just one regime of many in which air temperature, winds, and surface type are related.