H31F-1492
Relating trends in land surface skin-air temperature difference to soil moisture and evapotranspiration.

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Karen Louise Veal1, Christopher Taylor2, Belen Gallego-Elvira2 and Darren Ghent1, (1)University of Leicester, Physics & Astronomy, Leicester, United Kingdom, (2)Centre for Ecology and Hydrology, Wallingford, United Kingdom
Abstract:
Soil water is central to both physical and biogeochemical processes within the Earth System. Drying of soils leads to evapotranspiration (ET) becoming limited (water-stressed) and is accompanied by rises in land surface temperature (LST), land surface-air temperature difference (delta T), and sensible heat flux. Climate models predict sizable changes to the global water cycle but there is variation between models in the time scale of ET decay during dry spells. The e-stress project is developing novel satellite-derived datasets to assess the ability of Earth System Models (ESMs) to capture behaviour that is due to soil moisture controls on ET.

Satellite records of LST now extend 15 years or more (e.g. MODIS Terra LST - 2000 to present; Along-Track Scanning Radiometer (ATSR) LST record - 1995 to 2012). As part of the e-stress project these datasets have been used calculate time series of delta T. This paper reports the use of MODIS LST and ESA GlobTemperature ATSR LST with 2m air temperatures from a range of reanalyses to calculate trends in delta T and water-stressed area. We examine the variability of delta T in relation to satellite soil moisture, vegetation and precipitation and model evaporation data.

Delta T anomalies show significant negative correlations with soil moisture, in different seasons, in several regions across the planet. Global mean delta T anomaly is small (magnitude mostly less than 0.2 K) between July 2002 and July 2008 and decreases to a minimum in early 2010. The reduction in delta T anomaly coincides with an increase in soil moisture anomaly and NDVI anomaly suggesting an increase in evapotranspiration and latent heat flux with reduced sensible heat flux.

In conclusion there have been distinct signals in delta T during recent decades and these provide an independent assessment of hydrologically-forced changes in the land surface energy balance which can be used as a metric for the assessment of ESM and global surface flux products.