EP34A-03
Modelling Soil Profiles in their Landscape Context.

Wednesday, 16 December 2015: 16:30
2003 (Moscone West)
Michael J Kirkby, University of Leeds, Leeds, LS2, United Kingdom
Abstract:
Through models, explores the relationships between the interacting drivers of soil profile evolution. Soil hydrology drives the partition of precipitation between overland flow, shallow subsurface flow and deeper percolation/ lateral flow. Critical parts of this interchange occurs close to the surface, within the zone of strong bioturbation, where inorganic composition is determined by the balance between erosion and weathering rates expressed in the chemical depletion ratio. The intensity of organic matter cycling may also limit the final composition of weathering products. Erosion rates are partly driven by the geomorphic environment, through gradient and hydrology, but also constrained by the degree of soil weathering, through particle size and mineralogy. Weathering rates are determined by water movement below the bioturbation zone and ionic diffusion from parent material, which control the rate of decline with soil depth. These interactions are explored through simple equilibrium and evolutionary models for the soil profile that are applicable across a wide range of geological and climatic environments.