PP42B-06
Regional hydroclimate response to freshwater fluxes from the Fennoscandian Ice Sheet during the Last Termination

Thursday, 17 December 2015: 11:35
2012 (Moscone West)
Francesco Muschitiello1, Trond Martin Dokken2, Francesco S.R. Pausata3, Rienk Smittenberg4 and Barbara Wohlfarth4, (1)Stockholm University, Department of Geological Sciences, Stockholm, Sweden, (2)Bjerknes Centre for Climate Research, Bergen, Norway, (3)Stockholm University, Department of Meteorology, Stockholm, Sweden, (4)Stockholm University, Stockholm, Sweden
Abstract:
Resolving the effects of freshwater forcing during the last glacial-interglacial transition, the Last Termination, is critical to our comprehension of rapid climate change. In particular, the role of Fennoscandian Ice Sheet (FIS) and freshwater from the eastern seaboard of the North Atlantic has been entirely disregarded in the context of the abrupt regional hydroclimate shifts that characterized this period. Here we infer freshwater input variations from the FIS to the Nordic Seas based on two accurately dated hydroclimate reconstructions from lake sediment records from Southern Sweden and one SST reconstruction from the Nordic Seas.

The records indicate a number of abrupt freshwater discharges into the Nordic Seas at the start of the Bølling interstadial and during the Allerød interstadial. We observe that these intervals of enhanced FIS freshwater outflow correspond to different modalities of hydroclimate regime shifts in Greenland. Using a set of climate model simulations, we show that the dominant Greenland hydroclimate state can be influenced by the degree of FIS freshwater recirculation in the Nordic Seas, which redirects the excess of sea ice partitioned into the Barents Sea towards the eastern Greenland Current. The tradeoff between buildup and recirculation of sea ice in the Nordic Seas generate large-scale sea-level pressure anomalies that may explain the sign and magnitude of the isotopic and temperature changes inferred from Greenland and North European reconstructions. We conclude that air-sea interactions in the North Atlantic are more sensitive to Fennoscandian freshwater forcing than previously thought. These results could help to solve the problematic relationship between origin, timing and magnitude of freshwater perturbations and abrupt deglacial changes in North Atlantic Ocean circulation in numerical simulations.