Temporal monitoring of Bardarbunga volcanic activity with TanDEM-X

Friday, 18 December 2015: 17:15
309 (Moscone South)
Cristian Rossi1, Christian Minet1, Thomas Fritz1 and Michael Eineder2, (1)German Aerospace Center Oberpfaffenhofen, Oberpfaffenhofen, Germany, (2)German Aerospace Center DLR Oberpfaffenhofen, Wessling, Germany
On August 29, 2014, a volcanic activity started in the lava field of Holuhraun, at the north east of the Bardarbunga caldera in Iceland. The activity was declared finished on February 27, 2015, thus lasting for about 6 months. During these months the magma chamber below the caldera slowly emptied, causing the rare event of caldera collapse. In this scenario, TanDEM-X remote sensing data is of particular interest. By producing high-resolution and accurate elevation models of the caldera, it is possible to evaluate volume losses and topographical changes useful to increase the knowledge about the volcanic activity dynamics. 5 TanDEM-X InSAR acquisitions have been commanded between August 01, 2014 and November 08, 2014. 2 acquisitions have been commanded before the eruption and 3 acquisitions afterwards. To fully cover the volcanic activity, also the lava flow area at the north-west of the caldera has been monitored and a couple of acquisitions have been employed to reveal the subglacial graben structure and the lava path.

In this context, the expected elevation accuracy is studied on two levels. Absolute height accuracy is analyzed by inspecting the signal propagation at X-band in the imaged medium. Relative height accuracy is analyzed by investigating the InSAR system parameters and the local geomorphology. It is shown how the system is very well accurate with mean height errors below the meter. Moreover, neither InSAR processing issues, e.g. phase unwrapping errors, nor complex DEM calibration aspects are problems to tackle.

Caldera is imaged in its entirety and new cauldron formations and, in general, the complete restructuring of the glacial volcanic system is well represented. An impressive caldera volume loss of about 1 billion cubic meters is measured in about two months. The dyke propagation from the Bardarbunga cauldron to the Holuhraun lava field is also revealed and a graben structure with a width of up to 1 km and a sinking of a few meters is derived. These results show how TanDEM-X mission is capable to provide to emergency institutions and geophysicists reliable measures not easy to retrieve with on-site instruments.