H43C-1517
Insights in nutrient sources and transport from high-frequency monitoring at the outlet pumping station of an agricultural lowland polder catchment
Thursday, 17 December 2015
Poster Hall (Moscone South)
Joachim Rozemeijer1, Bas Van der Grift1, Hans Peter Broers2, Wilbert Berendrecht3, Leonard Oste1 and Jasper Griffioen4, (1)Deltares, Delft, Netherlands, (2)Geological Survey of the Netherlands, Utrecht, 3508, Netherlands, (3)Berendrecht Consultancy, Harderwijk, Netherlands, (4)Geological Survey of the Netherlands, Utrecht, Netherlands
Abstract:
In this study, we present new insights in nutrient sources and transport processes in an agricultural-dominated lowland water system based on high-frequency monitoring technology. Starting in October 2014, we have collected semi-continuous measurements of the TP and NO3 concentrations, conductivity and water temperature at a large scale pumping station at the outlet of a 576 km2 polder catchment. The semi-continuous measurements complement a water quality monitoring program at six locations within the drainage area based on conventional monthly or biweekly grab sampling. The NO3 and TP concentrations at the pumping station varied between 0.5 and 10 mgN/L and 0.1 and 0.5 mgP/L. The seasonal trends and short scale concentration dynamics clearly indicated that most of the NO3 loads at the pumping station originated from subsurface drain tubes that were active after intensive rainfall events during the winter months. A transfer function-noise model of hourly NO3 concentrations reveals that a large part of the dynamics in NO3 concentrations during the winter months can be predicted using rainfall data. In February however, NO3 concentrations were higher than predicted due to direct losses after the first manure application. The TP concentration almost doubled during operation of the pumping station. This highlights resuspension of particulate P from channel bed sediments induced by the higher flow velocities during pumping. Rainfall events that caused peaks in NO3 concentrations did not result in TP concentration peaks. Direct effects of run-off, with an association increase in the TP concentration and decrease of the NO3concentration, was only observed during rainfall event at the end of a freeze-thaw cycle. The high-frequency monitoring at the outlet of an agricultural-dominated lowland water system in combination with low-frequency monitoring within the area provided insight in nutrient sources and transport processes that are highly relevant for water quality management.