GC43A-1158
Global-warming-induced Increases in Extreme Precipitation are Smallest over Mountains

Thursday, 17 December 2015
Poster Hall (Moscone South)
Xiaoming Shi, University of Washington Seattle Campus, Seattle, WA, United States and Dale R Durran, University of Washington Seattle Campus, Atmospheric Sciences, Seattle, WA, United States
Abstract:
Climate-model simulations predict an intensification of extreme precipitation in almost all areas of the world under global warming. Geographical variations in the magnitude of this intensification are clearly evident in the simulations, but most previous efforts to understand the factors responsible for the changes in extreme precipitation have focused on zonal averages, neglecting the variations that occur in different regions at the same latitude. Here we present climate-model simulations for an ocean-covered earth having simple idealized continents with north-south mountain barriers in its northern midlatitudes. We show that the sensitivity of extreme precipitation to increases in the global mean surface temperature is 3 %/K lower over the mountains than over the oceans and the plains. Fundamental factors responsible for changes in precipitation intensity may be divided between thermodynamic effects, arising through changes in temperature and moisture, and dynamical effects, produced by changes in the ascent rates of saturated air parcels. The difference in sensitivity among these regions is not due to thermodynamic effects, but rather to differences between the gravity-wave dynamics governing vertical velocities over the mountains and the cyclone dynamics governing vertical motions over the oceans and plains.