PP13B-2284
New insights into the Glacial to Holocene climatic evolution of Southern Patagonia from lacustrine lipid biomarker isotope records
Abstract:
Southern Patagonia is a key region for paleoclimatic reconstructions in the Southern Hemisphere as it is the only landmass located in the Southern Hemisphere westerly wind (SHW) belt. Within the framework of the ICDP drilling campaign PASADO ("Potrok Aike Maar Lake Sediment Archive Drilling Project"), a high resolution sediment record was recovered from Laguna Potrok Aike (LPTA, 51°58´S, 70°23´W).In order to identify the sources of organic matter contributions to the sedimentary archive, we investigated long-chain n-alkanes as tracers for terrestrial and aquatic plants. We analysed n-alkane distributions and their compound-specific hydrogen (δD) and stable carbon (δ13C) isotopic composition in various sample types such as soils, dust, aquatic and terrestrial plants and lake surface sediments. Based on two different model approaches, one using the n-alkane distributions and the other the compound-specific isotope values, we traced the origin of mid- (n-C23) and long- (n-C29) chain n-alkanes into modern lake sediments. Both models yield similar results: around 70% of the n-C23 originates from aquatic plants and more than 80% of the n-C29 is delivered from dust and terrestrial plants to the sediment. These results provide the basis for a robust paleo-environmental reconstruction of the lipid biomarker isotope records from LPTA.
Compound-specific δD and δ13C records for the last 55,000 years from the PASADO core are interpreted in the framework of these findings. Here, δD of the n-C23 alkane serves as proxy for lake water isotopic changes driven by the precipitation-evaporation balance, moisture sources and water column stratification. In contrast, we interpret changes in δD of the n-C29 alkane to reflect dust source area changes and therefore, the intensity of the SHW. A 50‰ shift in the δD record of the n-C23 alkane between 10.000 to 8.000 years age indicates a major hydrological change affecting the lake level while isotopic changes in the n-C29 alkane were minor.