Axial Seamount - Under the hood of the volcano machine.

Thursday, 17 December 2015
Poster Hall (Moscone South)
Adrien F Arnulf, University of Texas at Austin, Institute for Geophysics, Austin, TX, United States, Alistair J Harding, University of California San Diego, La Jolla, CA, United States and Graham M Kent, University of Nevada Reno, Nevada Seismological Laboratory, Reno, NV, United States
On the Juan de Fuca ridge, Axial volcano is the most volcanically active site of the northwestern Pacific and it has been continuously monitored through two complete eruption cycles, with an increased number of seafloor instruments, leading in 2014 to the deployment of a permanent, wired-to-shore, seafloor observatory. Accurate imaging of the internal structure of volcanic systems is critical in order to characterize and quantify mass and energy transport mechanisms in such dynamic environments.

To produce high-resolution velocity/reflectivity structures of Axial volcano, here, we combined a synthetic ocean bottom experiment (SOBE), 3-D traveltime tomography, 2D elastic full waveform and a reverse time migration (RTM) formalism.

We present an updated and more complete outlook of Axial volcano upper crustal structure. We find that the addition of 469,891 traveltime arrivals, from twelve different multichannel seismic lines, to a previous OBSs-based traveltime tomography inversion, greatly improved the resolution of the three-dimensional velocity structure. We observe two elongated crustal magma reservoir beneath the central volcano. We investigate the extent, volume and physical state of those magma reservoirs and provide images of the volcanic plumbing system. We use our 3D velocity structure to relocate several months of seismicity and track magma movements between the caldera and the eruption site. We show that crustal-aging is controlled by pipe-like pattern of focused hydrothermal circulation. We suggest that the subsiding caldera floor at Axial Volcano was initiated ~720kyr +/-100kyr and provides a near perfect trap for the ponding of lava flows.