G21B-1034
The Subsidence Signature Due To Groundwater Extraction as Inferred from Remote Sensing Data in Mexico City
Abstract:
Mexico City is facing a severe water shortage; current drought conditions in the city have led to an increase in the demand for groundwater, the pumping of which can cause significant land subsidence. In this study we explored what new information interferometric synthetic aperture radar (InSAR) data collected by the TerraSAR-X satellite could bring to water resource managers in the city so that they can efficiently and sustainably allocate water resources.Previous work done over Mexico City indicates that InSAR can be used to detect deformation due to groundwater pumping. Cabral-Cano et al. (2008) processed InSAR data acquired from ERS between 1996-2000 and from ENVISAT between 2003-2005. They compared the deformation map to geology maps of the region with information obtained by seismic methods. They found that a spatial correlation between the land deformation and the presence of young lacustrine clay beds, which indicate that the subsidence was caused by fluid pressure loss in the aquitard. They also concluded that the subsidence, for the most part, had no seasonal variation and continues to occur at near-constant, high rates.
TerraSAR-X satellite data is known to be more sensitive to small deformations than the data from satellites used in previous studies in the region because of its frequent revisit cycle, short wavelength, and accurate orbital information. For this project, we derived long sequences of crustal deformation time series from TerraSAR-X data between May 2011 and December 2012 using the Small Baseline Subset (SBAS) method. The resulting time series was then compared to GPS data for calibration and validation. We observed a long-term deformation that was similar to those found in previous studies. The next step in our work is to determine whether the increased sensitivity of the TerraSAR-X data allows us to detect a seasonal deformation pattern over the study area.