NH41A-1790
Prediction of rock falls properties thanks to emitted seismic signal.
Thursday, 17 December 2015
Poster Hall (Moscone South)
Vincent Bachelet1, Anne Mangeney1, Julien de Rosny2, Renaud Toussaint3 and Maxime Farin4, (1)Institut de Physique du Globe de Paris, Paris, France, (2)ESPCI, Institut Langevin, CNRS, Paris Cedex 05, France, (3)EOST, CNRS, Strasbourg, France, (4)JPL/NASA/Caltech, Pasadena, CA, United States
Abstract:
The seismic signal generated by rockfalls, landslides or avalanches provides an unique tool to detect, characterize and monitor gravitational flow activity, with strong implication in terms of natural hazards. Indeed, as natural flows travel down the slope, they apply stresses on top of the Earth surface, generating seismic waves in a wide frequency band, associated to the different physical processes involved. Our aim is to deduce the granular flow properties from the generated signal. It is addressed here with both laboratory experiments and simulations.
In practice, regarding the experimental part, a set-up using a combination of optical and acoustic methods is employed, in order to measure the seismic signal generated by, (i) the impact of beads of different properties, (ii) the collapse of granular columns, over horizontal and sloping substrates. The substrates are made of plates and blocs of different sizes and characteristics.
For the first point (i), Farin et al. [2015] have showed that it exists a link between the properties of an impacting bead (mass and velocity) on smooth surfaces and the emitted signal (radiated elastic energy and mean frequency). This demonstrate that it is possible to deduce the impactor properties thanks to the emitted signal. We show here that it is slightly different for rough and erodible surfaces, because of more dissipative processes engaged (friction, grain reorganization, etc).
The point (ii) is different from multiple single impacts. We compare experimental situation to a Discrete Elements Method simulation developed by Patrick Richard (IFSTTAR). It computes trajectories of each particle of a granular column collapses, using collisions forces from simplified Hertz's contact model (spring + dashpot) and Verlet's algorithm. We used it to compute synthetic signal generated by the impacts. If the dynamics of beads is well reproduced, waves are different, confirming that “more is different”.