S31A-2715
A Spatially and Temporally Continuous LFE Catalogue for the Southern Alps, New Zealand

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Calum John Chamberlain1, John Townend1 and Laura-May Baratin2, (1)Victoria University of Wellington, School of Geography, Environment, and Earth Sciences,, Wellington, New Zealand, (2)Victoria University of Wellington, Wellington, New Zealand
Abstract:
Using a brightness-based beamforming approach coupled with a matched-filter correlation method, we have developed a 6.5 year record of low-frequency earthquakes (LFEs) occuring on and near the deep extent of New Zealand's Alpine Fault. Our brightness template detection method, based on that of Frank et al. (2014), scans a pre-determined grid of possible seismic sources to automatically find LFE templates based on the stack of bandpassed squared seismic data. Previous work (Wech et al., 2012, Chamberlain et al., 2014) has shown that the depths of standard seismicity are anti-correlated with those of tremor and LFEs in the central Southern Alps: hence, by careful grid selection, shallow seismic sources can effectively be discriminated against. This beamforming approach produces many (>900) possible events. Initial beamforming detections are grouped by moveout and stacked to produce a subset of higher-quality events for use as templates in a cross-correlation detector. Events detected by cross-correlation are stacked to increase their signal-to-noise charectaristics before being located using a 3D velocity model. This method produces a spatially and temporally continuous catalogue of LFEs throughout the 6.5 year study period. The catalogue highlights quasi-continuous slow deformation occuring beneath the seismogenic zone near the Alpine Fault, punctuated by periods of increased LFE generation associated with tremor, and following large regional earthquakes. To date we have found no evidence of LFE generation north-east of Mt. Cook, the highest point in the Southern Alps, despite systematic searching throughout the region. We suggest that the along-strike cessation of tremor is due to changes in the fault's dip and the hypothesised presence of partially subducted passive margin material. This remnant passive margin would lie benath the tremor-generating region and has been linked to along-strike changes in subcrustal earthquake distributions (Boese et al., 2013).