S53D-08
Lahar Infrasound Associated with Villarrica’s March 3, 2015 Eruption

Friday, 18 December 2015: 15:25
307 (Moscone South)
Jeffrey Bruce Johnson, Boise State University, Boise, ID, United States and Jose Palma, University of Concepcion, Concepcion, Chile
Abstract:
The paroxysmal eruption of Volcan Villarrica on March 3rd, 2015 produced a moderate-sized lahar, which descended more than 20 km within the Rio Correntoso/Turbio drainage. A three-element infrasound array 10 km from the summit, and 4 km from the lahar’s closest approach, was used to track the flow’s evolution as it progressed downstream. Array processing using cross correlation lag times as well as semblance techniques places important constraints on the lahar’s dynamics, including the detection of an early flow pulse that traveled from 3 to 13 km at an average speed of 36 m/s. After the first six minutes of lahar advancement the signal evolves into a relatively stationary infrasonic tremor located ~11.5 km downstream and consistent with a notch in intervening topography. Diminishing tremor amplitude over the course of more than two hours constrain the flow duration and indicates progressively decreasing flow energy and/or confinement of the flow to more distant reaches. This study demonstrates the powerful capabilities of infrasound arrays for lahar study and suggests its potential implementation for hazard monitoring.