V33B-3086
Volcanic Debris Flows of the Latest Paleozoic Arbasay Formation: Geomorphological Characters and Paleoenvironment Reconstruction of Northern Tian Shan, NW China

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Dongdong Liu1, Zhaojie Guo2 and Wei Yang1, (1)China University of Petroleum, Beijing, China, (2)Peking University, Beijing, China
Abstract:
Texturally well-preserved volcanic debris flows (also called lahars) are exposed in the Latest Paleozoic Arbasay Formation, Northern Tian Shan. LA-ICP-MS zircon dating of the intercalated fallout tuff sample provided an age of 314.4±3.4 Ma (MSWD=1.6), suggesting they were deposited at Latest Carboniferous. The lahars consist primarily of two lithofacies: massive, poorly lithified diamictites and stratified, moderately lithified gravelly sandstones. The diamictites can be generally divided into two subfacies, i.e., the matrix-supported and the clast-supported diamictites. Most diamictites are structureless and nongraded. They are thick in beds and contain large clasts up to 3 m in dimension. The gravelly sandstones display much finer particle size and have wedge or lenticular geometries. Large clasts are absent within them and the sorting characters are much better than the diamictites. Despite the different size grading, the matrix and the clasts of the two lithofacies appear to be homogeneous. The matrix is generally sandy mudstone. The clasts comprise rhyolites, dacites, andesites, andesitic basalts and basalts, same to the co-existing volcanic rocks, suggesting they originate from the cognate volcanics. The disorganized diamictites are supposed to deposit from a turbulent flood or pyroclastic surge. The gravelly sandstone lithofacies are interpreted as sand-rich flood flows or hyperconcentrated flood flows during the waning stage of a mass-flow event. The overall characteristics of the deposits suggest a mass-flow dominated alluvial fan environment. It’s noteable that several syn- sedimentary normal faults occurred within these lahar deposits, indicating that the Southern Junggar Basin was in an extensional regime during the lahars’ deposition. Structure is dominated by normal faulting, allowing the existence of relatively small, highly compartmentalized depocenters. This is also supported by geochemistry and detrital zircon studies.