B51H-0519
Spatial Upscaling of Long-term In Situ LAI Measurements from Global Network Sites for Validation of Remotely Sensed Products

Friday, 18 December 2015
Poster Hall (Moscone South)
Baodong Xu, RADI Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China
Abstract:
Leaf area index (LAI) is a key parameter in terrestrial ecosystem models, and a series of global LAI products have been derived from satellite data. To effectively apply these LAI products, it is necessary to evaluate their accuracy reasonablely. The long-term LAI measurements from the global network sites are an important supplement to the product validation dataset. However, the spatial scale mismatch between the site measurement and the pixel grid hinders the utilization of these measurements in LAI product validation. In this study, a pragmatic approach based on the Bayesian linear regression between long-term LAI measurements and high-resolution images is presented for upscaling the point-scale measurements to the pixel-scale. The algorithm was evaluated using high-resolution LAI reference maps provided by the VALERI project at the Järvselja site and was implemented to upscale the long-term LAI measurements at the global network sites. Results indicate that the spatial scaling algorithm can reduce the root mean square error (RMSE) from 0.42 before upscaling to 0.21 after upscaling compared with the aggregated LAI reference maps at the pixel-scale. Meanwhile, the algorithm shows better reliability and robustness than the ordinary least square (OLS) method for upscaling some LAI measurements acquired at specific dates without high-resolution images.

The upscaled LAI measurements were employed to validate three global LAI products, including MODIS, GLASS and GEOV1. Results indicate that (i) GLASS and GEOV1 show consistent temporal profiles over most sites, while MODIS exhibits temporal instability over a few forest sites. The RMSE of seasonality between products and upscaled LAI measurement is 0.25-1.72 for MODIS, 0.17-1.29 for GLASS and 0.36-1.35 for GEOV1 along with different sites. (ii) The uncertainty for products varies over different months. The lowest and highest uncertainty for MODIS are 0.67 in March and 1.53 in August, for GLASS are 0.67 in November and 0.99 in July, and for GEOV1 are 0.61 in March and 1.23 in August, respectively. (iii) The overall uncertainty for MODIS, GLASS and GEOV1 is 1.36, 0.90 and 0.99, respectively. According to this study, the long-term LAI measurements can be used to validate time series remote sensing products by spatial upscaling from point-scale to pixel-scale.