T23A-2914
Slab flattening, dynamic topography and normal faulting in the Cordillera Blanca region (northern Peru)
Tuesday, 15 December 2015
Poster Hall (Moscone South)
Audrey Margirier, ISTerre Institute of Earth Sciences, Saint Martin d'Hères, France
Abstract:
Processes driving surface uplift in the Andes are still debated and the role of subduction processes as slab flattening on surface uplift and relief building in the Andes is not well understood. Some of the highest Andean summits, the Cordillera Blanca (6768 m) and the Cordillera Negra (5187 m), are located above a present flat subduction zone (3-15°S), in northern Peru. In this area, both the geometry and timing of the flattening of the slab are well constrained (Gutscher et al., 1999; Rosenbaum et al., 2005). This region is thus a perfect target to explore the effect of slab flattening on the Andean topography and uplift. We obtained new apatite (U-Th)/He and fission-track ages from three vertical profiles located in the Cordillera Blanca and the Cordillera Negra. Time-temperature paths obtained from inverse modeling of the thermochronological data indicates a Middle Miocene cooling for both Cordillera Negra profiles. We interpret it as regional exhumation in the Cordillera Occidental starting in Middle Miocene, synchronous with the onset of the subduction of the Nazca ridge (Rosenbaum et al., 2005). We propose that the Nazca ridge subduction at 15 Ma and onset of slab flattening in northern Peru drove regional positive dynamic topography and thus enhanced exhumation in the Cordillera Occidental. This study provides new evidence of the impact subduction processes and associated dynamic topography on paleogeography and surface uplift in the Andes.