Englacial Structures as Indicators of the Controls on Ice Flow

Friday, 18 December 2015
Poster Hall (Moscone South)
Nicholas Holschuh1, Byron R Parizek2, Richard B Alley3 and Sridhar Anandakrishnan3, (1)Pennsylvania State University Main Campus, Geosciences, University Park, PA, United States, (2)Pennsylvania State University Dubois, Dubois, PA, United States, (3)Pennsylvania State University Main Campus, University Park, PA, United States
Direct sampling of the subglacial environment is costly, and will therefore never supply the spatial coverage needed to determine the basal boundary conditions required for large-scale ice-sheet modeling. Studies of the West Antarctic Ice Sheet (WAIS) show that the frictional and rheologic properties of the bed are a leading control on the evolution of the system, so developing geophysical methods to help constrain the basal characteristics of WAIS will reduce uncertainty in predictions of the timing and magnitude of future sea-level rise. Radar-imaged structures within the ice are an attractive data set for this pursuit, as they contain information about the flow dynamics that transform the horizontally deposited layers to their modern configuration; however, they can be challenging to interpret, given the number of processes acting to deform the internal layers and the difficulty in automating their analysis. In this study, we move away from the layer-tracing paradigm in favor of an automated slope extraction algorithm. This has several advantages: it does not require feature-continuity, providing a more stable result in regions of intense deformation, and it results in a data product that maps directly to model output. For steady-state features, layer slopes reflect the horizontal and vertical velocity structure, making quantitative comparison of the model and observations simple compared to the more qualitative, particle tracer comparisons done in the past. Using a higher order ice-flow model, we attempt to refine our understanding of basal properties using reflector slope fields at the grounding line of Whillans Ice Stream and the shear margin of the North East Greenland Ice Stream, with the hope of eventually using this method for basin-scale inversions.