C41A-0679
Near Real Time Sea Ice Thickness from the CryoSat-2 Satellite, and the application of a time-varying snow load

Thursday, 17 December 2015
Poster Hall (Moscone South)
Rachel Tilling1, Andy Ridout1, Andrew Shepherd2 and Alan Muir1, (1)University College London, London, United Kingdom, (2)University of Leeds, Leeds, LS2, United Kingdom
Abstract:
Since October 2010, data from the European Space Agency (ESA) CryoSat-2 (CS-2) satellite has provided the means to produce sea ice thickness maps across the entire Arctic Ocean basin. These large-scale observations of Arctic sea ice thickness are required to determine trends, compare hemispheres and aid predictive models of future global climate change. However, the final ESA data product is not available until ~30 days after the satellite acquisition, and as such the use of the data for near real time (NRT), operational purposes, has not been possible.

At University College London (UCL) we now produce the first NRT estimates of Arctic sea ice thickness, with a lag of only 2 days, using NRT data that has recently been released by ESA. This original, operational dataset will benefit industries such as transport and tourism, as well as the scientific community. This presentation will summarise the NRT product and the data that is avilable, investigate the differences between the NRT and final product, and analyse its reliability and data coverage in particular regions of interest (e.g. the Northwest Passage, and the Beaufort Sea).

We have also developed an Arctic-wide, time-varying snow load, so that our CryoSat-2 sea ice processing no longer relies on a constant monthly snow climatology. This presentation will summarise the development, application, and benefits of the new snow load in relation to our NRT and final sea ice thickness estimates.