P52A-02
Dispersing V-type asteroids during the planetary instability in the jumping Jupiter model

Friday, 18 December 2015: 10:35
2007 (Moscone West)
Pedro Ivo Brasil, National Observatory of Brazil, Rio De Janeiro, Brazil
Abstract:
V-type asteroids are a particular class of asteroids whose surface mineralogy is associated to a basaltic composition. Currently, the only known source of these asteroids in the Main Belt is (4) Vesta. This asteroid is located in the inner belt (2.1 < a < 2.5 AU), and has associated a dynamical family formed by the impact ejecta of two large craters excavated on its basaltic surface some 2 and 1 Gyr ago, respectively. Thus, many V-type asteroids belong to the Vesta family. However, an increasing number of V-type asteroids is found outside the limits of the family. Some of these asteroids, especially those located in the inner belt, are explained as dynamical fugitives from the family. Others cannot be linked to the Vesta family nor to (4) Vesta, neither dynamically nor mineralogically. The most paradoxal cases are the V-type asteroids found beyond 2.5 AU, in the central (2.5 < a < 2.8 AU) and outer (2.8 < a < 3.2 AU) parts of the Main Belt, where no local source of basaltic material is recognized. In this work, we propose a coherent dynamical mechanism to explain the delivery of V-type asteroids originated in the inner belt to the central and outer belt. This mechanism involves the planetary instability during the epoch when the outer planets were migrating due to their interaction with a disk of planetesimals, some 4 Gyr ago. The instability is caused by mutual planetary encounters in the framework of the jumping Jupiter model with initially five outer planets: Jupiter, Saturn and three ice giants. As a consequence of this instability, an ice giant is temporarily scattered into the asteroid belt and helps to disperse the asteroids in semimajor axis by up to ~0.5 AU. The V-type asteroids dispersed by this mechanism could have originated either in an older cratering event on the surface of (4) Vesta, or in the fragmentation of another basaltic asteroid in the inner belt that likely have existed during the epoch of planetary migration. We tested several configurations of hypothetical Vesta-like families, and analised how they are dispersed. We also verified that, after the instability phase, the asteroids scattered to the central and outer belt remain stable over Gyr timescales, being a plausible explanation for the V-type asteroids found in these regions, like (1459) Magnya.