PP21B-2238
Assessment of Plio-Pleistocene Sea Surface Temperature Evolution Across Ocean Basins, Hemispheres, and Latitudes

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Laura Peterson1, Kira T Lawrence2, Haley Mauriello2, Jane Wilson1 and Lucia Holte1, (1)Luther College, Decorah, IA, United States, (2)Lafayette College, Easton, PA, United States
Abstract:
New sea surface temperature (SST) records from the southern Pacific and southern Atlantic Oceans allow assessment of similarities and differences in climate evolution across ocean basins, hemispheres, and latitudes over the last 5 million years. Our high-resolution, alkenone-derived SST records from ODP Sites 1088 (South Atlantic, 41°S) and 1125 (South Pacific, 42°S) share strong structural similarities. When compared with SST records from the mid-latitudes of the northern hemisphere, these records provide compelling evidence for broadly hemispherically symmetrical open-ocean temperature evolution in both ocean basins as tropical warm pools contracted over the Plio-Pleistocene. This symmetry in temperature evolution occurs despite strong asymmetries in the development of the cryosphere over this interval, which was marked by extensive northern hemisphere ice sheet growth. Parallel SST evolution across ocean basins and hemispheres suggests that on longterm (>105 yr) timescales, many regions of the world ocean are more sensitive to the global energy budget than to local or regional climate dynamics, although important exceptions include coastal upwelling zone SSTs, high latitude SSTs, and benthic δ18O. Our analysis further reveals that throughout the last 5 Ma, temperature evolution in the extra-tropical Pacific of both hemispheres is very similar to the evolution of SST in the eastern equatorial Pacific upwelling zone, revealing tight coupling between the growth of meridional and equatorial Pacific zonal temperature gradients over this interval as both the extra-tropics and the eastern equatorial Pacific cold tongue underwent cooling. Finally, while long term temperature evolution is broadly consistent across latitudes and ocean basins throughout the entire Plio-Pleistocene, we see evidence that climate coupling on orbital timescales strengthened significantly at 2.7 Ma, at which point obliquity-band coherence emerges among diverse SST records. We attribute this emergence of coherence to a strengthened greenhouse gas feedback at the obliquity frequency that was initiated with the intensification of northern hemisphere glaciation, as proposed by Herbert et al. (2010).