V24C-02
A plume-triggered delamination origin for the Columbia River flood basalt eruptions

Tuesday, 15 December 2015: 16:15
310 (Moscone South)
Eugene Humphreys, University of Oregon, Eugene, OR, United States and Amberlee Patrice Darold, Oklahoma Geological Survey, Leonard, OK, United States
Abstract:
From their initial eruptions in south-central Oregon, Columbia River basalt (CRB) volcanism propagated rapidly north, with the largest eruptions being ~300 km north of the Yellowstone hotspot track. We combine upper mantle seismic tomography, CRB eruption timing constraints, geochemical evolution of magmas, uplift history, and the tectonic context to construct a well-constrained model for the origin of the CRB eruptions. Arrival of the Yellowstone plume below south-central Oregon initiated a north-propagating rollback-style delamination of remnant Farallon lithosphere from the base of northern Oregon, enabled by ocean-lithosphere detachment as sills were emplacement near the (continental or oceanic) Moho. This drew Yellowstone asthenosphere to the north. When delamination propagated beneath the Cretaceous Wallowa pluton, its garnet-rich (dense) root foundered. Root foundering led to: pluton uplift (creating the Wallowa Mts); a mantle return flow that greatly amplified magmatic production; and assimilation of continental crust in the vicinity of a large magma chamber created by the evacuated pluton root. Thus, much of the CRB eruptive volume and history is attributed to lithospheric activity that was triggered by the arrival of mantle that was anomalously magmatically productive.