GC13G-1241
The Impact of Anthropogenic Activities on Ecosystems of Long Island Sound, N.Y.

Monday, 14 December 2015
Poster Hall (Moscone South)
Edwige Lauture1, Cecilia M McHugh2, Frank Oliver Nitsche3 and Timothy C Kenna3, (1)Queens College CUNY, SEES, Queens, NY, United States, (2)CUNY Queens College, Flushing, NY, United States, (3)Lamont -Doherty Earth Observatory, Palisades, NY, United States
Abstract:
Long Island Sound (LIS) is a tide-dominated estuary located along heavily populated regions on the eastern coast of the US. Western LIS has been impacted by heavy metals and is susceptible to hypoxic and anoxic conditions since the 1900’s. As part of the Long Island Sound Cable Fund and the National Science Foundation programs, we surveyed the western and central regions of LIS in 2006 and 2013, respectively. From the R/V Hugh Sharp and the R/V Seawolf, we collected high-resolution subbottom profiles, multibeam bathymetry, sediment cores, and grabs in distinct sedimentary environments such as channels, terraces, and river mouths. The goal was to evaluate the impact of anthropogenic activities as they relate to physical processes and populated regions.

Along western LIS, total organic carbon (TOC) and heavy metal concentrations are higher from the 1850s to the present, especially along locations of known high organic waste. Pre-industrial concentrations of TOC average 2.22% with maximum values of 4.75%. A similar trend is observed with heavy metals. For example, lead (Pb) increased from background levels of ~10 to 20 ppm to over 200 ppm. Benthic foraminifers seem to be influenced by these trends with changes in ecosystems. The dominant assemblage, Elphidium excavatum clavatum remains dominant with a slight decrease in their abundance during anthropogenic times. From ~1850’s to the present Ammonia beccarii becomes more abundant. These shifts in foraminifer species to assemblages that tolerate low oxygen conditions reflect the increasing hypoxic conditions.

In central LIS, surface sediments average TOC of 1.34% with highest values of 5.21% near the Housatonic River that drains industrialized portions of Connecticut, and lowest values of 0.073% near the Long Island coastline. Understanding the evolution of hypoxia as well as the sources of heavy metals can lead to important implications for restoration of marine ecosystems.