GC51F-1151
Spatiotemporal Distribution of Metals along a Salinity Gradient in a River Estuary of the Northern Gulf of Mexico

Friday, 18 December 2015
Poster Hall (Moscone South)
Songjie He and Yi-Jun Xu, Louisiana State University, Baton Rouge, LA, United States
Abstract:
Saltwater intrusion has become a significant problem for many coastal rivers due to global climate change and the continuous sea level rise. The flocculation of dissolved metals during estuarine mixing plays a critical role in self-purification of metals. A number of studies have investigated pH and salinity effects on metal mobility. Many of these studies were conducted in a laboratory setting. The reported field studies considered only few metals and their dynamics under marginal pH / salinity variation, typically over a short period of time. Since the spring of 2013, we have been conducting a study on spatiotemporal distribution of metals along a 90-km reach of the Calcasieu River estuary in the northern Gulf of Mexico. Monthly field trips were made to conduct in-situ measurements and collect water samples at six sites along the river. In addition, sediment samples from the riverbed surface were collected at the same sites four times to assess metal accumulation. Field measurements included water temperature, pH, salinity, and specific conductivity; Water samples were analyzed for concentration of a range of metals including Al, Ba, B, Cd, Ca, Cr, Cu, Fe, Pb, Li, Mg, Mn, Ni, P, K, Si, Ag, Na, Sr, Ti, V, and Zn. The estuarine river reach showed a wide range of salinity and pH (salinity: 0.04 - 21.78 ppt; pH: 6.2-8.1), strongly affected by river hydrology and tidal mixing. Concentration and spatial distribution of the metals in river water show response to flow regimes from the low (400 cfs) to the intermediate (400-2600 cfs) and high flows. This paper presents the dynamics of the metals under varying flow, pH and salinity gradients over the seasons and discusses a potential “intrusion” of metal accumulation in riverbed upstream as sea level rise persists.